Процент. Наращение

Экономика » Процент. Наращение

Страница 2

По отношению к следующим периодам ставки процентов трактуются по-разному в зависимости от принятой схемы начисления: по простым или по сложным процентам. В первом случае приросты денежных сумм для любого периода будут составлять все ту же долю i от первоначальной суммы Р. в результате наращенная за п периодов сумма составит величину

Sn=P+n·i·P=P·(1+n·i) (1)

Здесь и в дальнейшем будем пользоваться дробным измерением ставки i.

В отличие от простых для сложных процентов одна и та же ставка i берется для каждого последующего промежутка не от первоначальной суммы, а от результата предыдущего начисления, т.е. от суммы, наращенной на начало данного периода. Отсюда следует, что вклад Р при ставке сложного процента i через п периодов составит сумму

Sn=P·(1+i)n (2)

Таким образом, последовательность наращенных сумм {Sn} в случае простых процентов представляет арифметическую прогрессию, в то время как для сложных процентов прогрессия будет геометрической.

Выражения (1) и (2) называют формулой простых и, соответственно, сложных процентов, а под процентными деньгами или, кратко, процентами понимают величину дохода (приращение денег) In=Sn-P. В финансовых вычислениях в случае меняющихся во времени процентных ставок используют очевидные обобщения правил (1), (2):

- для простых процентов,

- для сложных процентов.

Дисконтирование и удержание процентов. Эти процедуры являются обратными по отношению к процессу начисления процентов. Дисконтированием называется авансовое удержание с заемщика процентов в момент выдачи ссуды, т.е. до наступления срока ее погашения.

Другим вариантом дисконтирования является учет векселей в банке, когда банк, принимая вексель от предъявителя, выдает ему обозначенную на векселе сумму до срока ее погашения. При этом банк удерживает в свою пользу проценты (дисконт) от суммы векселя за время, оставшееся до срока погашения. Подобным образом (с дисконтом) государство продает большинство своих ценных бумаг (долговых обязательств).

В нашем случае исходной величиной выступает не начальный вклад Р, а некоторая будущая сумма S. Вопрос состоит в том, чтобы определить эквивалентную сумму Р, отстоящую на t предшествующих периодов до срока выплаты S. В зависимости от принятого критерия эквивалентности можно выделить два подхода к расчету предшествующих сумм.

Во-первых, по размеру вклада Р, который при начислении процентов через t периодов дает сумму S, и, во-вторых, по размеру платежа, к которому придем при удержании процентов с финальной суммы S за срок t. Таким образом, при одном толковании за базовую величину, т.е. за 100%, принимается размер вклада Р, в то время как при другом – за 100% берется будущая сумма S. Кроме того, по каждому варианту дисконтирование можно производить как по простым, так и по сложным процентам.

В случае приведения по вкладу Р для нахождения дисконтированных значений достаточно воспользоваться формулами (1) и (2), решив их относительно величины Р.

Страницы: 1 2 3 4

Еще о комерческих банках:

Регламентирование формирования валютных резервов Нацбанка Республики Молдова
Формирование и использование валютных резервов страны подлежат нормативному регулированию. Рассмотрим положения законодательства Республики Молдова в части регулирования валютных резервов. Следует отметить, что подобное регулирование является многоступенчатым, поскольку непосредственное управление ...

Процент. Наращение
Наращение первоначальной суммы капитала - это процесс присоединения к ней процентов в результате какой-либо финансовой операции. В зарубежной литературе используются термины accumulation (наращение), present value (PV, современная величина, первоначальной сумма), future value (FV, будущая величина, ...

Граница капитализации
При характеристике границы капитализации страхового рынка следует учитывать влияние размера страховых компаний на их работу на финансовых рынках в современных условиях и уровень государственных требований к страховщикам. Для исследователей в области финансов и страхования размер компании является ф ...

Навигация

Copyright © 2025 - All Rights Reserved - www.supremebank.ru